The Application of Evolutionary Algorithms in Multi-Objective Design and Optimization of Air Cooled Heatsinks

Author:

Abdelsalam Younis Osama1,Alimohammadi Sajad12,Persoons Tim1

Affiliation:

1. Department of Mechanical & Manufacturing Engineering, Trinity College, University of Dublin, Dublin 2, Ireland

2. School of Mechanical & Design Engineering, College of Engineering & Built Environment, Technological University Dublin, City Campus, Dublin D01 K822, Ireland

Abstract

Abstract Genetic algorithms (GAs) are considered to be one of the main types of evolutionary algorithms (EAs) and are being increasingly used in various engineering design applications. To a large extent, plate-fin heatsinks are used in the thermal management of compact electronic equipment and data centers. The shape optimization of the heatsinks is not rigorously investigated during the design process of high power electronics. Any improvements in the effectiveness of the heatsinks impact the energy consumed by large-scale information communication technology (ICT) facilities including data centers and telecommunication systems and promote a more sustainable use of raw materials. This paper investigates the optimization of plate-fin heatsinks by modifying the fin layout in a forced crossflow using a multi-objective genetic algorithm (MOGA) combined with computational fluid dynamics (CFD) simulations. The main objective is to improve the heat dissipation rate by modifying geometric parameters, i.e., the number, arrangement, and orientation of fins. For a generic heatsink test case, the optimized performance is examined in terms of thermal resistance, turbulence intensity, pumping power, coefficient of performance, and Chilton–Colburn j-factors. Among all of the cases investigated, the input parameter optimization configurations which coupled and rotated fins in groups of ten proved to be the most successful. For one case, an 18% increase in the effectiveness of heat dissipation is reported. However, when weight reduction was considered by dividing by the unit mass, the designs in one of the investigated families which remove a number of fins from the heatsink outperformed the rest, achieving improvements of 65% over the baseline.

Funder

European Regional Development Fund

Irish Research Council (IRC)

Science Foundation Ireland (SFI)

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3