Experimental Study on Impact/Fretting Wear in Heat Exchanger Tubes

Author:

Cha J. H.1,Wambsganss M. W.2,Jendrzejczyk J. A.2

Affiliation:

1. Korea Advanced Energy Research Institute, Taejon, Korea

2. Argonne National Laboratory, Argonne, Ill. 60439

Abstract

The objective of this study is to provide qualitative impact/fretting wear information for heat exchanger tubes through the performance of a series of tests involving the pertinent parameters: force between the tube and its support; tube to support plate hole clearance; tube support plate thickness; preload; and tube vibration frequency. The characteristics of impact/fretting wear relative to material combinations and fluid environment were also investigated. The test apparatus consists of a cantilevered tube with a simulated tube support plate at the “free end.” Tube vibration is induced by an electromagnetic exciter to simulate the flow-induced tube motion occurring in a real heat exchanger at the tube/tube support plate interface. Tests are conducted in air, water, and oil, all at room temperature. Removable wear rings are attached to the tube free end and simulated support fixture. Wear ring materials include carbon steel, 304 stainless steel, Inconel 600 and brass. Wear is measured by a weight loss technique and wear rates are calculated and reported as functions of the various pertinent parameters. Based on the test results, general conclusions are drawn.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fretting Wear Analysis of Flexible Vibrating Tube Interacting with the Support Plate in Low-Speed Water Tunnel;Journal of Vibration Engineering & Technologies;2023-04-29

2. Fretting‐Wear Damage Coefficients;Flow‐Induced Vibration Handbook for Nuclear and Process Equipment;2021-10-13

3. Investigation on the impact wear behavior of 2.25Cr–1Mo steel at elevated temperature;Wear;2021-07

4. Fretting Wear Failures;Failure Analysis and Prevention;2021-01-15

5. Fretting Wear;Friction, Lubrication, and Wear Technology;2017-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3