Affiliation:
1. Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208
2. The Boeing Company, Charleston, SC 29456
Abstract
Abstract
The manufacturing process of carbon fiber reinforced polymer (CFRP) composite structures can introduce many characteristic defects and flaws such as fiber misorientation, fiber waviness, and wrinkling. Therefore, it becomes increasingly important to detect the presence of these defects at the earliest stages of development. Eddy current testing (ECT) is a nondestructive inspection (NDI) technique that has been proven quite effective in detection of damage in metallic structures. However, NDI of composite structures has mainly relied on other methods such as ultrasonic testing (UT) and X-ray to name a few and not much on ECT. In this paper, the authors explore the possibility of using ECT in NDI of CFRP composites by conducting simulations and experiments thereafter. This research is based on the fact that the CFRP displays some low-level electrical conductivity due to the inherent conductivity of the carbon fibers. This low-level conductivity may permit eddy current pathways to cause the flow of eddy currents in the CFRP composites that can be exploited for nondestructive damage detection. An invention disclosure describing our high-frequency ECT method has also been processed. First, the multiphysics finite element method (FEM) simulation was used to simulate the detection of various types of manufacturing flaws and operational damage in CFRP composites such as fiber misorientation, waviness, wrinkling, and so on. Thereafter, ECT experiments were conducted on CFRP specimens with various manufacturing flaws using the Eddyfi Reddy eddy current array (ECA) system.
Subject
Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献