Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments

Author:

Valdivia y Alvarado Pablo1,Youcef-Toumi Kamal1

Affiliation:

1. Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract

The aim of this work is to investigate alternative designs for machines intended for biomimetic locomotion in liquid environments. For this, structural compliance instead of discrete assemblies is used to achieve desired mechanism kinematics. We propose two models that describe the dynamics of special compliant mechanisms that can be used to achieve biomimetic locomotion in liquid environments. In addition, we describe the use of analytical solutions for mechanism design. Prototypes that implement the proposed compliant mechanisms are presented and their performance is measured by comparing their kinematic behavior and ultimate locomotion performance with the ones of real fish. This study shows that simpler, more robust mechanisms, as the ones described in this paper, can display comparable performance to existing designs.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference14 articles.

1. Underwater Robotics;Yuh;Adv. Rob.

2. Fish Swimming

3. An Efficient Swimming Machine;Triantafyllou;Sci. Am.

4. Hydrodynamics of Fishlike Swimming;Triantafyllou;Annu. Rev. Fluid Mech.

5. Drag Reduction in Fish-like Locomotion;Barrett;J. Fluid Mech.

Cited by 118 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3