Binary Fluid Mixture and Thermocapillary Effects on the Wetting Characteristics of a Heated Curved Meniscus

Author:

Pratt David M.1,Kihm Kenneth D.2

Affiliation:

1. United States Air Force, Wright-Patterson AFB, OH 45433-7542

2. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843-3123

Abstract

An investigation has been conducted into the interactions of binary fluid mixtures (pentane [C5H12] coolant and decane [C10H22] additive) and thermocapillary effects on a heated, evaporating meniscus formed in a vertical capillary pore system. The experimental results show that adding decane, the secondary fluid that creates the concentration gradient, actually decreases the meniscus height to a certain level, but did increase the sustainable temperature gradient for the liquid-vapor interface, so did the heat transfer rate, delaying the onset of meniscus instability. The results have demonstrated that interfacial thermocapillary stresses arising from liquid-vapor interfacial temperature gradients, which is known to degrade the ability of the liquid to wet the pore, can be counteracted by introducing naturally occurring concentration gradients associated with distillation in binary fluid mixtures. Also theoretical predictions are presented to determine the magnitudes of both the thermocapillary stresses and the distillation-driven capillary stresses, and to estimate the concentration gradients established as a result of the distillation in the heated pore.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3