A Bilinear Variational Principle Governing Longitudinal Vibration of Rods With Frequency-Dependent Material Damping
Affiliation:
1. The Pennsylvania State University, University Park, PA 16802
Abstract
The equations governing the longitudinal vibration of rods with frequency-dependent material damping are developed as the Euler equations of a bilinear variational principle. Frequency-dependent material damping and modulus are accommodated through the introduction of an augmenting thermodynamic field that interacts with the mechanical displacement field. These two primary dependent fields are supplemented with two corresponding adjoint fields for the purpose of addressing nonconservative system behavior. The variational function is nearly symmetric in the primary and adjoint variables, a formulation which may be particularly useful in computational simulation of system behavior using finite elements. The augmenting thermodynamic field is found to be effectively internal—no boundary conditions involve it alone.
Publisher
ASME International
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献