Unique Loss Factor Images for Complex Dynamic Systems

Author:

Gregory McDaniel J.1,Liem Alyssa1,Kaminski Allison1

Affiliation:

1. Sound and Vibration Laboratory, Department of Mechanical Engineering, Boston University, Boston, MA 02215

Abstract

Abstract Over the past century, a number of scalar metrics have been proposed to measure the damping of a complex system. The present work explores these metrics in the context of finite element models. Perhaps the most common is the system loss factor, which is proportional to the ratio of energy dissipated over a cycle to the total energy of vibration. However, the total energy of vibration is difficult to define for a damped system because the total energy of vibration may vary considerably over the cycle. The present work addresses this ambiguity by uniquely defining the total energy of vibration as the sum of the kinetic and potential energies averaged over a cycle. Using the proposed definition, the system loss factor is analyzed for the cases of viscous and structural damping. For viscous damping, the system loss factor is found to be equal to twice the modal damping ratio when the system is excited at an undamped natural frequency and responds in the corresponding undamped mode shape. The energy dissipated over a cycle is expressed as a sum over finite elements so that the contribution of each finite element to the system loss factor is quantified. The visual representation of terms in the sum mapped to their spatial locations creates a loss factor image. Moreover, analysis provides an easily computed sensitivity of the loss factor with respect to the damping in one or more finite elements.

Funder

Office of Naval Research

Publisher

ASME International

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3