Optimizing the Tribological Behavior of Hybrid Copper Surface Composites Using Statistical and Machine Learning Techniques

Author:

Thankachan Titus1,Soorya Prakash K.1,Kamarthin Mujiburrahman2

Affiliation:

1. Department of Mechanical Engineering, Anna University Regional Campus, Coimbatore 641046, Tamil Nadu, India e-mail:

2. Department of Automobile Engineering, Hindusthan Institute of Technology, Coimbatore 641032, Tamil Nadu, India e-mail:

Abstract

Copper-based surface composite dispersed with varying fractions of hybrid reinforcement was fabricated through friction stir processing (FSP). Hybrid reinforcement particles were prepared from aluminum nitride (AIN) and boron nitride (BN) particles of equal weight proportion. Based on design of experiments, wear characteristics of the developed copper surface composites were estimated using pin-on-disk tribometer. Experimental parameters include volumetric fraction of hybrid reinforcement particles (5, 10, and 15 vol %), load (10, 20, 30 N), sliding velocity (1, 1.5, and 2 m/s), and sliding distance (500, 1000, and 1500 m). Microstructural characterization demonstrated uniform dispersion of hybrid reinforcement particles onto the copper surface along with good bonding. Hardness of the developed surface composites increased with respect to increase in hybrid particle dispersion when compared with copper substrate while a reduction in density values was revealed. Analysis on wear rate values proved that wear rate decreased with increase in hybrid particle dispersion and increased with increase in load, sliding velocity, and distance. Analysis of variance (ANOVA) specified load as the most significant factor over wear rate values followed by volume fractions of particle dispersion, sliding velocity, and distance. Regression model constructed was found efficient in predicting wear rate values. Analysis of worn out surfaces through scanning electron microscopy (SEM) revealed the transition of severe to mild wear with respect to increase in hybrid reinforcement particle dispersion. A feed forward back propagation algorithm-based artificial neural network (ANN) model with topology 4-7-1 was developed to predict wear rate of copper surface composites based on its control factors.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3