Surrogate Model Based Liner Optimization for Aeroengines and Comparison With Finite Elements

Author:

Jiang Hanbo1,Siu Hong Lau Alex2,Huang Xun34

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077, Hong Kong, China e-mail:

2. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077, Hong Kong, China e-mail:

3. State Key Laboratory of Turbulence and Complex System, Department of Aeronautics and Astronautics, College of Engineering Peking University, Beijing 100871, China;

4. Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology Clear Water Bay, Kowloon 999077, Hong Kong, China e-mails: ;

Abstract

Numerical optimizations are very useful in liner designs for low-noise aeroengines. Although modern computational tools are already very efficient for a single aeroengine noise propagation simulation run, the prohibitively high computational cost of a broadband liner optimization process which requires hundreds of thousands of runs renders these tools unsuitable for such task. To enable rapid optimization using a desktop computer, an efficient analytical solver based on the Wiener–Hopf method is proposed in the current study. Although a Wiener–Hopf-based solver can produce predictions very quickly (order of a second), it usually assumes an idealized straight duct configuration with a uniform background flow that makes it arguable for practical applications. In the current study, we employ the Wiener–Hopf method in our solver to produce an optimized liner design for a semi-infinite annular duct setup and compare its noise-reduction effect with an optimized liner designed by the direct application of a numerical finite element solver for a practical aeroengine intake configuration with an inhomogeneous background flow. The near-identical near- and far-field solutions by the Wiener–Hopf-based method and the finite element solvers clearly demonstrate the accuracy and high efficiency of the proposed optimization strategy. Therefore, the current Wiener–Hopf solver is highly effective for liner optimizations with practical setups and is very useful to the preliminary design process of low-noise aeroengines.

Funder

Hong Kong University of Science and Technology

Ministry of Industry and Information Technology of the People's Republic of China

Publisher

ASME International

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3