An Analytical Model of Mechanistic Wear of Polymers

Author:

Panda Sandip1,Sarangi Mihir2,Roy Chowdhury S. K.2

Affiliation:

1. Tribology Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India e-mail:

2. Tribology Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India

Abstract

This paper proposes a wear model for polymers based on so-called mechanistic processes comprising both low cycle fatigue and abrasive wear mechanisms, which are prominent in polymer–metal sliding interfaces. Repeated elastic contact causes localized fatigue, whereas abrasive part is an anticipatory outcome of plastic contacts by hard metal asperities on to soft polymer surface. Further, presuming adhesive interactions in elastic–plastic contacts, asperity contact theories with necessary modifications were analyzed to assess load and separation for their subsequent use in elementary wear correlations. Both Gaussian and Weibull distributions of asperity heights were considered to include statistics of surface microgeometry. Finally, volumetric wear was written in terms of roughness parameters, material properties, and sliding distance. Validation was conducted extensively, and reliability of the formulation was achieved to a large extent. Experimental part of this work included several pin-on-disk tests using polyether ether ketone (PEEK) pins and 316L stainless steel disks. Disks with different roughness characteristics generated by polishing, turning, and milling were tested. Experimental results agreed well with predictions for the polished surface and with some deviations for other two surfaces. Further, fatigue to abrasive wear ratio was identified as an analytical tool to predict prevailing wear mechanism for polymer-metal tribo-systems. After examining the considered cases, it was both interesting and physically intuitive to observe a complete changeover in wear mechanisms following simply an alteration of roughness characteristics.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3