Hopf Bifurcation Control for Rolling Mill Multiple-Mode-Coupling Vibration Under Nonlinear Friction

Author:

Zeng Lingqiang1,Zang Yong1,Gao Zhiying1

Affiliation:

1. School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China e-mail:

Abstract

Rolling mill system may lose its stability due to the change of lubrication conditions. Based on the rolling mill vertical–torsional–horizontal coupled dynamic model with nonlinear friction considered, the system stability domain is analyzed by Hopf bifurcation algebraic criterion. Subsequently, the Hopf bifurcation types at different bifurcation points are judged. In order to restrain the instability oscillation induced by the system Hopf bifurcation, a linear and nonlinear feedback controller is constructed, in which the uncoiling speed of the uncoiler is selected as the control variable, and variations of tensions at entry and exit as well as system vibration responses are chosen as feedback variables. On this basis, the linear control of the controller is studied using the Hopf bifurcation algebraic criterion. And the nonlinear control of the controller is studied according to the center manifold theorem and the normal form theory. The results show that the system stability domain can be expanded by reducing the linear gain coefficient. Through choosing an appropriate nonlinear gain coefficient, the occurring of the system subcritical bifurcation can be suppressed. And system vibration amplitudes reduce as the increase of the nonlinear gain coefficient. Therefore, introducing the linear and nonlinear feedback controller into the system can improve system dynamic characteristics significantly. The production efficiency and the product quality can be guaranteed as well.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Publisher

ASME International

Subject

General Engineering

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3