Thin-Shell Thickness of Two-Dimensional Materials

Author:

Gao Enlai1,Xu Zhiping23

Affiliation:

1. Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China

2. Applied Mechanics Laboratory, Department of Engineering Mechanics, Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China;

3. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China e-mail:

Abstract

In applying the elastic shell models to monolayer or few-layer two-dimensional (2D) materials, an effective thickness has to be defined to capture their tensile and out-of-plane mechanical behaviors. This thin-shell thickness differs from the interlayer distance of their layer-by-layer assembly in the bulk and is directly related to the Föppl–von Karman number that characterizes the mechanism of nonlinear structural deformation. In this work, we assess such a definition for a wide spectrum of 2D crystals of current interest. Based on first-principles calculations, we report that the discrepancy between the thin-shell thickness and interlayer distance is weakened for 2D materials with lower tensile stiffness, higher bending stiffness, or more number of atomic layers. For multilayer assembly of 2D materials, the tensile and bending stiffness have different scaling relations with the number of layers, and the thin-shell thickness per layer approaches the interlayer distance as the number of layers increases. These findings lay the ground for constructing continuum models of 2D materials with both tensile and bending deformation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference37 articles.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3