Affiliation:
1. The Department of Mechanical Engineering and the Bioengineering Program, The Pennsylvania State University, University Park, PA 16802
Abstract
This paper addresses the development of an output feedback controller for the Penn State Electric Ventricular Assist Device (EVAD). The control law is designed to minimize the electric power consumption of the motor, while utilizing the measured pusher plate position as its only feedback signal. The control algorithm results in a suboptimal performance. The feedback gain function is calculated such that the expected value of the deviations between the suboptimal and full state feedback power consumption values is minimized. The system state initial conditions are treated as random variables with specified probability density functions. Numerical simulations indicate that the output feedback controller of the EVAD has a near optimum performance (the excessive electric power consumption is less than 1 percent), and a time shift manipulation of a single feedback gain function can drive the EVAD in various speeds with minimal energy losses.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献