Analytical Investigation of Non-Fourier Bioheat Transfer in the Axisymmetric Living Tissue Exposed to Pulsed Laser Heating Using Finite Integral Transform Technique

Author:

Kishore Pankaj1,Kumar Sumit1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Rourkela 769008, India

Abstract

Abstract This article proposes the closed-form solution of the generalized non-Fourier model-based bioheat transfer equation (BHTE) in Cylindrical coordinates to understand the thermal behavior of living tissue heated by a pulsed laser. The axisymmetric living tissue exposed to the non-Gaussian temporal profile of laser heating has been considered to investigate the non-Fourier bioheat transfer phenomena. The closed-form solution of the generalized non-Fourier model-based BHTE with time-dependent thermal energy generation has been obtained through the finite integral transform (FIT) technique. The analytical solution was juxtaposed to the corresponding numerical solution in order to determine its reliability. The numerical solution of the aforementioned governing equation has been obtained by the finite volume method (FVM). The results of both analytical and numerical solutions have been verified using results given in published literature. Subsequently, the dual-phase-lag (DPL) model's findings were juxtaposed to those obtained using the hyperbolic and traditional Fourier models. The effect of different parameters like relaxation times corresponding to the temperature gradient and heat flux, metabolic energy generation, and blood perfusion on the resultant temperature distribution inside the axisymmetric living tissue exposed to pulsed laser heating has been discussed. The importance of this study might be found in various applications such as laser-based-photothermal therapy, melting of the surface of metal and alloys by laser heating.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3