Effect of Liquid Transparency on Laser-Induced Motion of Drops

Author:

Shukla R.1,Sallam K. A.1

Affiliation:

1. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078

Abstract

An experimental investigation of the role of liquid transparency in controlling laser-induced motion of liquid drops is carried out. The study was motivated by application to manipulation of liquid drops over a solid substrate. Droplets with diameters of 1–4 mm were propelled on a hydrophobic substrate using a pulsed-laser beam (532 nm, 10 Hz, 3–12 mJ/pulse) with a 0.9 mm diameter fired parallel to the substrate. The test liquid was distilled water whose transparency was varied by adding different concentrations of Rhodamine 6G dye. Motion of the drops was observed using a video camera. Measurements include direction of motion and the distance traveled before the drops come to rest. The present results show that the direction of the motion depends on the drop transparency; opaque drops moved away from the laser beam, whereas transparent drops moved at small angles toward the laser beam. The motion of both transparent and opaque drops was dominated by thermal Marangoni effect; the motion of opaque drops was due to direct heating by the laser beam, whereas in the case of transparent drops, the laser beam was focused near the rear face of the transparent drops to form a spark that pushed the drops in the opposite direction. Energies lower than 3 mJ were incapable of moving the drops, and energies higher than 12 mJ shattered the drops instead of moving them. A phenomenological model was developed for the drop motion to explain the physics behind the phenomenon.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3