Affiliation:
1. Gas Turbine Laboratory, Ohio State University, 2300 West Case Rd., Columbus, OH 43234
2. GE Aircraft Engines, Cincinnati, OH 45215
Abstract
Abstract
Experimental results obtained for an Inconel® compressor blade rubbing a steel casing at engine speed are described. Load cell, strain gauge, and accelerometer measurements are discussed and then applied to analyze the metal-on-metal interaction resulting from sudden incursions of varying severity, defined by incursion depths ranging from 13μm to 762μm (0.0005in. to 0.030in.). The results presented describe the transient dynamics of rotor and casing vibro-impact response at engine operational speed similar to those experienced in flight. Force components at the blade tip in axial and circumferential directions for a rub of moderate incursion depth (140μm) are compared to those for a severe rub (406μm). Similar general trends of variation during the metal-to-metal contact are observed. However, in the nearly threefold higher incursion the maximum incurred circumferential load increases significantly, while the maximum incurred axial load increases much less, demonstrating the non-linear nature of the rub phenomena. Concurrently, the stress magnification on the rubbing blade at root mid-chord, at tip leading edge, and at tip trailing edge is discussed. The results point to the possibility of failure occurring first at the airfoil trailing edge. Such a failure was in fact observed in the most severe rub obtained to date in the laboratory, consistent with field observations. Computational models to analyze the non-linear dynamic response of a rotating beam with periodic pulse loading at the free-end are currently under development and are noted.
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献