Sequential Sampling-Based Asymptotic Probability Estimation of High-Dimensional Rare Events

Author:

Xu Yanwen1,Wang Pingfeng1

Affiliation:

1. University of Illinois at Urbana-Champaign Department of Industrial & Enterprise Systems Engineering, , Urbana, IL 61801

Abstract

Abstract Accurate analysis of rare failure events with an affordable computational cost is often challenging in many engineering applications, particularly for problems with high-dimensional system inputs. The extremely low probabilities of occurrence often lead to large probability estimation errors and low computational efficiency. Thus, it is vital to develop advanced probability analysis methods that are capable of providing robust estimations of rare event probabilities with narrow confidence bounds. The general method of determining confidence intervals of an estimator using the central limit theorem faces the critical obstacle of low computational efficiency. This is a side effect of the widely used Monte Carlo method, which often requires a large number of simulation samples to derive a reasonably narrow confidence interval. In this paper, a new probability analysis approach is developed which can be used to derive the estimates of rare event probabilities efficiently with narrow estimation bounds simultaneously for high-dimensional problems and complex engineering systems. The asymptotic behavior of the developed estimator is proven theoretically without imposing strong assumptions. An asymptotic confidence interval is established for the developed estimator. The presented study offers important insights into the robust estimations of the probability of occurrences for rare events. The accuracy and computational efficiency of the developed technique are assessed with numerical and engineering case studies. Case study results have demonstrated that narrow bounds can be obtained efficiently using the developed approach with the true values consistently located within the estimation bounds.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multitask Modeling for Reliability Analysis and Design with Partial Information;2024 Annual Reliability and Maintainability Symposium (RAMS);2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3