Dose Rate Assessment Around the PCFV Release Line During Severe Accident Conditions in Nuclear Power Plant Krsko

Author:

Grgic Davor1,Duckic Paulina1,Bencik Vesna1,Sadek Sinisa1

Affiliation:

1. University of Zagreb Faculty of Electrical Engineering and Computing , Unska 3, Zagreb 10000, Croatia

Abstract

Abstract Passive containment filtered vent (PCFV) was installed in Nuclear Power Plant Krsko (NEK) in 2013 as part of the safety upgrade program. It is intended for severe accident consequences prevention and mitigation by ensuring the containment integrity. When the pressure in the containment reaches limiting value, containment atmosphere is released into the environment through the PCFV system exhaust line. But, before release in the environment, the containment atmosphere passes through five aerosol filters in the containment and one iodine filter in the auxiliary building (AB) to reduce isotopic activity. In this paper, dose rates around the exhaust line of the PCFV system resulting from radioactivity release in case of a severe accident were determined in a four-step methodology. The assumed severe accident scenario is a beyond design basis accident station blackout (SBO) in NEK, which was simulated using the MELCOR code. Its results were input for the radionuclide transport and removal and dose estimation (RADTRAD) radiological calculations to obtain the activities released in the containment. These activities were then transformed into the gamma source intensity and spectrum using the ORIGEN-S libraries. This form of the source term is required for Monte Carlo calculations which were performed using the MCNP6.2. Two Monte Carlo calculations were performed. One for which the radiation source was modeled to emanate from the containment atmosphere and the other from the PCFV duct fluid. The main reason for the calculation was to assess limiting dose rates around PCFV duct (radiation monitor location) during actuation after severe accident. That is why the model is simple and conservative. The other task was to demonstrate that this location is not suitable for longer personnel presence in case of equipment failure during the PCFV actuation. Due to conservative assumptions, predicted dose rates are the highest expected at that location for any severe accident scenario.

Publisher

ASME International

Subject

Nuclear Energy and Engineering,Radiation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3