Self-Supervised Learning of Spatially Varying Process Parameter Models for Robotic Finishing Tasks

Author:

Jung Yoon Yeo1,Narayan Santosh V.1,Gupta Satyandra K.2

Affiliation:

1. University of Southern California Center for Advanced Manufacturing, , Los Angeles, CA 90007

2. University of Southern California Center for Advanced Manufacturing, , Los Angeles, CA 90007 ,

Abstract

Abstract This article presents a self-supervised learning approach for a robot to learn spatially varying process parameter models for contact-based finishing tasks. In many finishing tasks, a part has spatially varying stiffness. Some regions of the part enable the robot to efficiently execute the task. On the other hand, some other regions on the part may require the robot to move cautiously in order to prevent damage and ensure safety. Compared to the constant process parameter models, spatially varying process parameter models are more complex and challenging to learn. Our self-supervised learning approach consists of utilizing an initial parameter space exploration method, surrogate modeling, selection of region sequencing policy, and development of process parameter selection policy. We showed that by carefully selecting and optimizing learning components, this approach enables a robot to efficiently learn spatially varying process parameter models for a given contact-based finishing task. We demonstrated the effectiveness of our approach through computational simulations and physical experiments with a robotic sanding case study. Our work shows that the learning approach that has been optimized based on task characteristics significantly outperforms an unoptimized learning approach based on the overall task completion time.

Funder

Directorate for Engineering

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3