Reliability Analysis With Monte Carlo Simulation and Dependent Kriging Predictions

Author:

Zhu Zhifu1,Du Xiaoping2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 258A Toomey Hall, 400 West 13th Street, Rolla, MO 65409-0500 e-mail:

2. Professor Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, 272 Toomey Hall, 400 West 13th Street, Rolla, MO 65409-0500 e-mail:

Abstract

Reliability analysis is time consuming, and high efficiency could be maintained through the integration of the Kriging method and Monte Carlo simulation (MCS). This Kriging-based MCS reduces the computational cost by building a surrogate model to replace the original limit-state function through MCS. The objective of this research is to further improve the efficiency of reliability analysis with a new strategy for building the surrogate model. The major approach used in this research is to refine (update) the surrogate model by accounting for the full information available from the Kriging method. The existing Kriging-based MCS uses only partial information. Higher efficiency is achieved by the following strategies: (1) a new formulation defined by the expectation of the probability of failure at all the MCS sample points, (2) the use of a new learning function to choose training points (TPs). The learning function accounts for dependencies between Kriging predictions at all the MCS samples, thereby resulting in more effective TPs, and (3) the employment of a new convergence criterion. The new method is suitable for highly nonlinear limit-state functions for which the traditional first- and second-order reliability methods (FORM and SORM) are not accurate. Its performance is compared with that of existing Kriging-based MCS method through five examples.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3