Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation

Author:

Markovic Marica1,Van Hoorick Jasper2,Hölzl Katja1,Tromayer Maximilian3,Gruber Peter1,Nürnberger Sylvia4,Dubruel Peter5,Van Vlierberghe Sandra6,Liska Robert7,Ovsianikov Aleksandr1

Affiliation:

1. Austrian Cluster for Tissue Regeneration, Institute of Materials Science and Technology, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:

2. Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium; Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, Elsene 1050, Belgium e-mail:

3. Austrian Cluster for Tissue Regeneration, Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:

4. Austrian Cluster for Tissue Regeneration, Medical University of Vienna, Department of Trauma Surgery, Währinger Gürtel 18-20, Vienna 1090, Austria e-mail:

5. Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, Ghent 9000, Belgium e-mail:

6. Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4-bis, 9000 Ghent, Brussels, Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, Elsene 1050, Belgium e-mail:

7. Austrian Cluster for Tissue Regeneration, Institute of Applied Synthetic Chemistry Division of Macromolecular Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, Vienna 1060, Austria e-mail:

Abstract

Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 106 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3