Stochastic Approximation Approach to Design of Linear Controllers for Tracking Systems With Asymmetric Saturation

Author:

Kabamba P. T.1,Meerkov S. M.2,Ossareh H. R.2

Affiliation:

1. Aerospace Department, University of Michigan, Ann Arbor, MI 48109

2. EECS Department, University of Michigan, Ann Arbor, MI 48109 e-mail:

Abstract

Reference-tracking closed-loop systems with saturating actuators often operate in asymmetric regimes. This is because reference signals cause the operating points away from the point of saturation symmetry (even if the actuator itself is symmetric, i.e., odd, function). Stability analysis and stabilizing controller design for asymmetric systems can be carried out using the same techniques as those for the symmetric case. In contrast, currently available methods for controller design in the framework of reference tracking are not applicable to asymmetric systems. The goal of this paper is to develop such a method for single-input single-output (SISO) plants having no poles in the open right-side plane. The approach is based on a global quasi-linearization technique referred to as stochastic linearization, which approximates the saturation function by an equivalent gain and equivalent bias. The main qualitative result obtained is that the asymmetry leads to a constant disturbance acting at the input of the plant. The quantitative results are analytical expressions for this disturbance and the ensuing steady-state tracking errors. It is shown that these errors exhibit a behavior incompatible with the linear control theory. Specifically, they may be increasing or nonmonotonic functions of the controller gain. In view of this fact, the paper develops a time-domain technique for linear tracking controller design based on two loci: the saturating root locus (to account for dynamics) and the saturating tracking error locus (to accounts for statics). Methods for sketching these loci are provided and applied to controllers design.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference32 articles.

1. Approximate Method for the Statistical Analysis of Nonlinear Systems,1954

2. Nonlinear Control Systems With Random Inputs;IRE Trans. Circuit Theory,1954

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3