Minimization of the Local Residual Stress in 3D Flip Chip Structures by Optimizing the Mechanical Properties of Electroplated Materials and the Alignment Structure of TSVs and Fine Bumps

Author:

Nakahira Kota1,Tago Hironori1,Endo Fumiaki1,Suzuki Ken2,Miura Hideo2

Affiliation:

1. Department of Nanomechanics, Graduate School of Engineering, Tohoku University, 6-6-11-716, Aoba Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan

2. Fracture and Reliability Research Institute, Graduate School of Engineering, Tohoku University, 6-6-11-716, Aoba Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan

Abstract

Since the thickness of stacked silicon chips in 3D integration has been thinned to less than 100 μm, the local thermal deformation of the chips has increased drastically because of the decrease of the flexural rigidity of the thinned chips. The clear periodic thermal deformation and thus, the local distribution of thermal residual stress appears in the stacked chips due to the periodic alignment of metallic bumps, and they sometimes deteriorate mechanical and electrical reliability of electronic products. In this paper, the dominant structural factors of the local residual stress in a silicon chip are investigated quantitatively based on the results of a three-dimensional finite element analysis and the measurement of the local residual stress in a chip using stress sensor chips. The piezoresistive strain gauges were embedded in the sensor chips. The length of each gauge was 2 μm, and an unit cell consisted of four gauges with different crystallographic directions. This alignment of the strain gauges enables us to measure the tensor component of three-dimensional stress fields separately. Test flip chip substrates were made of silicon chip on which the area-arrayed tin/copper bumps were electroplated. The width of a bump was fixed at 200 μm, and the bump pitch was varied from 400 μm to 1000 μm. The thickness of the copper bump was about 40 μm and that of tin layer was about 10 μm. This tin layer was used for the formation of rigid joint by alloying it with copper interconnection formed on a stress sensing chip. The measured amplitude of the residual stress increased from about 30 MPa to 250 MPa depending on the combination of materials such as bump, underfill, and interconnections. It was confirmed that both the material constant of underfill and the alignment structure of fine bumps are the dominant factors of the local deformation and stress of a silicon chip mounted on area-arrayed metallic bumps. It was also confirmed that not only the control of mechanical properties of electroplated copper thin films, but also the hound’s-tooth alignment of a through silicon via and a bump are indispensable for minimizing the packaging-induced stress in the three-dimensionally mounted chips. This test chip is very effective for evaluating the packaging-process-induced stress in 3D stacked chips quantitatively.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3