Forced Coefficients for a Short Length, Open Ends Squeeze Film Damper With End Grooves: Experiments and Predictions

Author:

Jeung Sung-Hwa1,Andrés Luis San2,Bradley Gary3

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:

2. Mast-Childs Chair Professor Fellow ASME Mechanical Engineering Department, Texas A&M University, College Station, TX 77843 e-mail:

3. Motor Trike, Inc., Troup, TX 75789 e-mail:

Abstract

Squeeze film dampers (SFDs) are effective to ameliorate shaft vibration amplitudes and to suppress instabilities in rotor–bearing systems. Compact aero jet engines implement ultra-short length SFDs (L/D ≤ 0.2) to satisfy stringent weight and space demands with low parts count. This paper describes a test campaign to identify the dynamic forced response of an open ends SFD (L = 25.4 mm and D = 125.7 mm), single film land, and oil fed through three holes (120 deg apart), operating with similar conditions as in an aircraft engine. Two journals make for two SFD films with clearances cA = 0.129 mm and cB = 0.254 mm (small and large). The total oil-wetted length equals Ltot = 36.8 mm that includes deep end grooves, width and depth = 2.5 × 3.8 mm, for installation of end seals. In the current experiments, the end seals are not in place. A hydraulic static loader pulls the bearing cartridge (BC) to a preset static eccentricity (eS), and two electromagnetic shakers excite the BC with single frequency loads to create circular orbits, centered and off-centered, over a prescribed frequency range ω = 10–100 Hz. The whirl amplitudes range from r = 0.05cA–0.6cA and r = 0.15cB–0.75cB while the static eccentricity increases to eS = 0.5cA and eS = 0.75cB, respectively. Comparisons of force coefficients between the two identical dampers with differing clearances show that the small clearance damper (cA) provides ∼4 times more damping and ∼1.8 times the inertia coefficients than the damper with large clearance (cB). The test results demonstrate damping scales with ∼1/c3 and inertia with ∼1/c, as theory also showed. Analysis of the measured film land pressures evidence that the deep end grooves contribute to the generation of dynamic pressures enhancing the dynamic forced response of the test SFDs. A thin film flow model with an effective groove depth delivers predictions that closely match the test damping and inertia coefficients. Other predictions, based on the short length bearing model, use an effective length Leff ∼ 1.17L to deliver damping coefficients 15% larger than the experimental results; however, inertia coefficients are ½ of the identified magnitudes. The experiments and analysis complement earlier experimental work conducted with centrally grooved SFDs.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference21 articles.

1. Squeeze Film Dampers: Operation, Models and Technical Issues,2010

2. Preliminary Investigation of Oil Films for Control of Vibration,1963

3. Zeidan, F., San Andrés, L., and Vance, J. M., 1996, “Design and Application of Squeeze Film Dampers in Rotating Machinery,” 25th Turbomachinery Symposium, Turbomachinery Laboratory, Texas A&M University, Houston, TX, pp. 169–188.

4. The Squeeze Film Damper Over Four Decades of Investigations. Part I: Characteristics and Operating Features;Shock Vib. Dig.,2002

5. The Squeeze Film Damper Over Four Decades of Investigations. Part II: Rotordynamic Analyses With Rigid and Flexible Rotors;Shock Vib. Dig.,2002

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3