Influence of Rim Seal Geometry on Hot Gas Ingestion Into the Upstream Cavity of an Axial Turbine Stage

Author:

Bohn Dieter1,Rudzinski Bernd1,Sürken Norbert1,Gärtner Wolfgang2

Affiliation:

1. Aachen University of Technology, Germany

2. Daimler-Benz Aerospace, MTU München GmbH, Germany

Abstract

The ingestion of hot gas at the rim seal of a turbine has been investigated for a complete stage with nozzle guide vanes and rotor blades for two types of geometry: 1. the simple axial gap between a flat rotor disk and a flat stator disk, commonly used for industrial gas turbines and 2. an axial lip of the rim seal on the stator combined with a flat rotor disk, often found in aero engine applications. The clearance of the axial gap has been varied for the second type. The efficiency of the rim seal has been examined for different seal flow rates, rotational Reynolds numbers and Mach numbers in the main flow. For the determination of the sealing effectiveness carbon dioxide gas concentration measurements have been carried out in the wheelspace. The distribution of the static pressure in the vicinity of the seal and inside the wheelspace has been measured by means of pressure taps at the stator disk. It is shown that the external flow Mach number in the main flow has a significant effect on the sealing efficiency. As Mach number increases sealing efficiency goes down. The rotational Reynolds number has a distinct effect on the rim seal efficiency depending on the examined configuration. Even for high seal flow rates the ingestion of hot gas can not be fully avoided. The experimental results were the motivation for a three-dimensional CFD approach neglecting the influence of the rotor blades. The results give further insight into aerodynamic features of the ingestion phenomenon.

Publisher

American Society of Mechanical Engineers

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3