Affiliation:
1. Structural Optimization Laboratory, Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269 e-mail:
Abstract
The stiffness of plate structures can be significantly improved by adding reinforcing ribs. In this paper, we are concerned with the stiffening of panels using ribs made of constant-thickness plates. These ribs are common in, for example, the reinforcement of ship hulls, aircraft wings, pressure vessels, and storage tanks. Here, we present a method for optimally designing the locations and dimensions of rectangular ribs to reinforce a panel. The work presented here is an extension to our previous work to design structures made solely of discrete plate elements. The most important feature of our method is that the explicit geometry representation provides a direct translation to a computer-aided design (CAD) model, thereby producing reinforcement designs that conform to available plate cutting and joining processes. The main contributions of this paper are the introduction of two important design and manufacturing constraints for the optimal rib layout problem. One is a constraint on the minimum separation between any two ribs to guarantee adequate weld gun access. The other is a constraint that guarantees that ribs do not interfere with holes in the panel. These holes may be needed to, for example, route components or provide access, such as a manhole. We present numerical examples of our method under different types of loadings to demonstrate its applicability.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献