An Investigation of Design Parameters Influencing the Fluid Film Behavior in Scaled Cylinder Block/Valve Plate Interface

Author:

Shang L.1,Ivantysynova M.1

Affiliation:

1. Purdue University, Lafayette, IN

Abstract

The efficiency of an axial piston pump or motor is dominated by the volumetric and torque losses of the three main lubricating interfaces (piston/cylinder, cylinder block/valve plate, and slipper/swash plate). The research study in this paper only focuses on the cylinder block/valve plate interface. The goal of this research is to investigate a novel approach for scaling the cylinder block/valve plate interface to have the same percentage of volumetric and torque losses of the baseline interface. To achieve this research goal, many design parameters influencing the performance of the interface are investigated. An in-house developed fluid structure and thermal interaction model was used to analyze the cylinder block/valve plate interface including the resulting parts temperature, the parts elastic deformation due to pressure and thermal load, the fluid film properties and resulting energy dissipation, friction torque, and leakage of cylinder block/valve plate interfaces. This model is utilized to simulate the cylinder block/valve plate interface performance of different sizes of the displacement units. In this paper, the displacement volume of the biggest unit is sixty-four times larger than the smallest unit. The computational study reveals the design parameters influencing the elastic deformations of the solid parts and the energy dissipation and stability of the fluid film in cylinder block/valve plate interface of different sizes. Based on these investigations, a novel scaling approach to scale the cylinder block/valve plate interface is discussed.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3