Development of a Catalytic Combustor for Industrial Gas Turbines

Author:

Cowell Luke H.1,Larkin Matthew P.2

Affiliation:

1. Solar Turbines Incorporated, San Diego, CA

2. Engelhard Corporation, Edison, NJ

Abstract

A catalytic combustion system for advanced industrial gas turbines is under long tern development employing recent advances in catalyst and materials technologies. Catalytic combustion is a proven means of burning fuel with single digit NOx emissions levels. However, this technology has yet to be considered for production in an industrial gas turbine for a number of reasons including: limited catalyst durability, demonstration of a system that can operate over all loads and ambient conditions, and market and cost factors. The catalytic combustion system will require extensive modifications to production gas turbines including fuel staging and variable geometry. The combustion system is composed of five elements: a preheat combustor, premixer, catalyst bed, part load injector and post-catalyst combustor. The preheat combustor operates in a lean premixed mode and is used to elevate catalyst inlet air and fuel to operating temperature. The premixer combines fuel and air into a uniform mixture before entering the catalyst. The catalyst bed initiates the fuel-air reactions, elevating the mixture temperature and partially oxidizing the fuel. The part load injector is a lean premixed combustor system that provides fuel and air to the post-catalyst combustor. The post-catalyst combustor is the volume downstream of the catalyst bed where the combustion reactions are completed. At part load conditions a conventional flame bums in this zone. Combustion testing is on-going in a subscale rig to optimize the system and define operating limits. Short duration rig testing has been completed to 9 atmospheres pressure with stable catalytic combustion and NOx emissions down to the 5 ppmv level. Testing was intended to prove-out design elements at representative full load engine conditions. Subscale combustion testing is planned to document performance at part-load conditions. Preliminary full-scale engine design studies are underway.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3