Ex Vivo and In Vivo Imaging Study of Ultrasound Capsule Endoscopy

Author:

Lee John H.1,Traverso Giovanni2,Ibarra-Zarate David3,Boning Duane S.1,Anthony Brian W.1

Affiliation:

1. Division of Gastroenterology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139

2. Division of Gastroenterology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139; Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115

3. Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Eugenio Garza Sada 2501 sur col. Tecnológico c.p, Monterrey, Nuevo León 64849, México

Abstract

Abstract Wireless capsule endoscopy (WCE) has revolutionized the capacity for evaluation of the gastrointestinal (GI) tract, but its evaluation is limited to the mucosal surface. To overcome this, ultrasound capsule endoscopy (UCE) that can evaluate the deeper structures beyond the mucosal surface has been proposed and several studies focusing on technology development have demonstrated promising results. However, investigations of the potential for clinical utility of this technology are lacking. This work had two main goals: perform ex vivo and in vivo imaging studies in a swine model to (1) evaluate if acoustic coupling between a capsule with a specific size and GI tract can be achieved only through peristalsis autonomously without any human control and (2) identify key issues and challenges to help guide further research. The images acquired in these studies were able to visualize the wall of the GI tract as well as the structures within demonstrating that achieving adequate acoustic coupling through peristalsis is possible. Critical challenges were identified including level of visualization and area of coverage; these require further in-depth investigation before potential clinical utility of UCE technology can be concluded.

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

Reference24 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3