Correlations of the Convective Heat Transfer in Annular Channels With Rotating Inner Cylinder

Author:

Jakoby Ralf1,Kim Soksik1,Wittig Sigmar1

Affiliation:

1. Universität Karlsruhe (T.H.), Karlsruhe, Germany

Abstract

In the internal air system of gas turbine engines or generators, a large variety of different types of annular channels with rotating cylinders are found. Even though the geometry is very simple, the flow field in such channels can be completely three-dimensional and also unsteady. From the literature it is well-known, that the basic two-dimensional flow field breaks up into a pattern of counter-rotating vortices, as soon as the critical speed of the inner cylinder is exceeded. The presence of a superimposed axial flow leads to a helical shape of the vortex pairs, which are moving through the channel. For the designer of cooling air systems there are several open questions. Does the formation of a Taylor-vortex flow field significantly affect the convective heat transfer behaviour of the channel flow? Is there a stability problem even for high axial Reynolds-numbers and where is the location of the stability boundary? After all, the general influence of rotation on the heat transfer characteristics has to be known. By the results of flow field and heat transfer measurements, the impact of rotation and the additional influence of Taylor-vortex formation on the heat transfer characteristics in annular channels with axial throughflow will be discussed. The flow field was investigated by time-dependant LDA-measurements, which revealed detailed information about the flow conditions. By a spectral analysis of the measured data, the different flow regimes could be identified. Based on these results, the heat transfer from the hot gas to the rotating inner shaft was determined with a steady-state method. Thus, the influence of the different physical phenomena such as rotation with and without Taylor-vortex formation or the flow development could be separated and quantified. Finally, correlations of the measured results were derived for technical applications.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3