Evaluation of Component Level Degradation in the Boeing 737-800 Air Cycle Machine

Author:

Jennions Ian1,Ali Fakhre1

Affiliation:

1. Cranfield University Integrated Vehicle Health Management Centre; School of Aerospace, Transport & Manufacturing, , Bedfordshire MK43 0AL , UK

Abstract

Abstract An aircraft is composed of several highly integrated and complex systems that enable it to deliver safe and comfortable flight. Its functionality is therefore strongly dependent on the safe operation of these systems within their designed optimal efficiencies. The air cycle machine (ACM) is a subsystem of the pressurized air conditioner (PACK) system, its key function is to enable refrigeration of the air in order to comply with the wide range of cabin environment requirements for maintaining aircraft safety and passenger comfort. The operation of the ACM is governed by the PACK control system which can mask degradation in its component during operation until severe degradation or failure results. The required maintenance is then both costly and disruptive. The ACM has been reported as one of the most frequently replaced subsystem and has been therefore reported as a major driver of unscheduled maintenance by the operators. This paper aims to investigate the component level degradation in the ACM at various severities and quantify the impact of its performance characteristics and associated interdependencies at PACK system level. In this paper, Cranfield University’s in-house environmental control system (ECS) simulation framework called simscape ECS simulation under all conditions (SESAC) has been implemented to evaluate degradation in the ACM components in a representative Boeing 737-800 aircraft PACK model. The fault modes of interest are those highlighted by the operators and correspond to the ACM compressor, turbine, and interconnecting mechanical shaft efficiency degradation. Simulation results, in terms of temperature, pressure, and mass flow at various degradation severities, are presented and discussed for each component at PACK system level. The acquired results suggest that, for all three fault modes, the PACK controller can compensate for an ACM degradation severity of up to 20%, allowing the PACK to sustain the delivery of the demanded temperature and mass flow. For degradation severity of above 20%, the PACK is able to deliver the demanded temperature with a substantially reduced mass flow. This has a significant impact on the PACK’s ability to meet the cabin demand efficiently. The methodology reported and the findings conceived to serve as an enabler toward formulating an effective PACK fault diagnostics and condition monitoring solution at system level, and fault reasoning at vehicle level.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference20 articles.

1. Smarter Aircraft Create a Wealth of Data But It Remains Underexploited;Peggy,2015

2. Recover and Rebuild—Toward a Leaner, More Agile MRO Industry;Derek,2021

3. Evaluating the Economic Benefits;Alexander,2018

4. A Review of Integrated Vehicle Health Management Tools for Legacy Platforms: Challenges and Opportunities;Esperon;Prog. Aerosp. Sci.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3