A Study of Offshore Wind Turbine Wake Effects in Yaw Conditions Using an Improved Actuator Line Method

Author:

Fan Ning1,Liao Kangping1,Wang Qian1,Fang Zheng1,Zhou Hui1

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University , No. 145, Nantong Street, Nangang District, Harbin City, Heilongjiang Province 150001 , China

Abstract

Abstract The study of wind turbine wakes is very important for the layout of offshore wind farms. The technique of regulating the yaw angles of the upstream wind turbine to lessen the influence on the downstream turbines has attracted continual attention in recent years. In this study, the wake interactions between a yaw wind turbine and a downstream wind turbine are investigated using a numerical technique based on the openfoam solver in conjunction with an improved actuator line method. The Gaussian anisotropic body force projection method and the integral velocity sampling method are the two fundamental components of the improvement of the actuator line method. The NREL 5-MW wind turbine benchmark model is used to test the numerical accuracy. The simulation of the wake effects from the upstream turbine in non-yawed conditions that follows has good agreement with the results that have been published in the literature. Finally, this work presents a number of predictions about the power coefficients and wake characteristics of two tandem-arranged wind turbines at various yaw angles based on these precise verification efforts. The results of the analysis in yaw conditions are used to derive the yaw wake characteristics and the optimal yaw angle range. As the yaw angle increases, the total power of the wind turbine increases and then decreases, and the upstream wake area decreases significantly. The total power reaches its maximum at 20–30 deg. The research content of this paper will provide an important reference for wind farm scheduling.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3