Latent Dynamics in Siting Onshore Wind Energy Farms: A Case of a Wind Farm in South Africa

Author:

Adedeji Paul A.1,Akinlabi Stephen2,Madushele Nkosinathi1,Olatunji Obafemi O.1

Affiliation:

1. University of Johannesburg, Johannesburg, South Africa

2. Walter Sisulu University, Mthatha, South Africa

Abstract

Abstract Siting a renewable energy facility entails several latent but influential quantitative and qualitative variables. Empirical and analytical models often fail to unravel the dynamics of these variables however; prior knowledge of their existence and dynamics offers knowledge-based decision-making during the plant siting process. This article examines the significance and dynamics of land ownership, avian environment, and renewable energy policies. Asides the literature survey, review of government policy, and regulations, a semi-structured interview-based method was used in this study using a wind power plant in the Eastern Cape Province of South Africa as a case study. A qualitative content analysis was used for response analysis. From our findings, dynamics around land ownership could be complex depending on the land category and existing contracts between a landowner and the developer. Also, an in-extensive study of avian habitat in seemingly viable land could lead to forced-downtime of wind turbine generators at periods where production is notably high. Lastly, careful examination of prevailing renewable energy policies and a projection on future policies culminates into the viability of the investment. Trivializing these variables before site development could lead to investment loss through low-productivity or force-majeure in the investment. On the overall, the proposed solutions to these barriers can be useful for wind developers in solving similar problems in other renewable energy resources both in South Africa and other countries.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reimagine renewable energy exploration in post-COVID-19 Africa;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2022-05-18

2. Quantum computing in renewable energy exploration: status, opportunities, and challenges;Design, Analysis, and Applications of Renewable Energy Systems;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3