Co-Processing of Municipal Solid Waste With Gypsum Waste for Enhanced Product Recovery

Author:

Burra K. G.1,Gupta A. K.1

Affiliation:

1. University of Maryland , College Park, Maryland, United States

Abstract

Abstract With growing generation of municipal solid wastes, development of sustainable disposal techniques is essential for effective utilization of these resources. While waste-to-energy (WtE) facilities provide energy recovery from these wastes, the low relative value of energy makes it unattractive. Simultaneously, high oxidation environment in these facilities also means losing significantly valuable resources such as metals/mineral in the form of their oxides and forming pollutant flue gases and fly-ash. Alternative pathways in waste-to-energy involve designing variable oxygen staging to effectively limit oxidation to only carbonaceous materials while minimizing high oxidation state products of metals. In such operating conditions, formation of char from the MSW components is thermodynamically favored and effective utilization of this resource in-situ can be valuable to improve the reactor operability. In this study, we investigated the feasibility of utilizing waste gypsum from construction/demolition sector to co-process in WtE process. Thermogravimetric analysis (TGA) with FTIR analysis of evolved gas was utilized to understand the operation conditions for such a co-processing and the formation of evolved gas products such as CO2, CO and SO2. Char formed from pyrolysis of waste tires was investigated to examine its reactions with gypsum. Char was found to be reduced by reacting with the anhydrous gypsum at temperatures beyond 850 °C. These studies also include the effect of oxidation potential of the purge gas on this reaction which was carried out by introducing 4.8% O2 into the TGA purge gas to understand its effect on the reaction of gypsum with the char in comparison to char oxidation.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3