Parameter Inference Under Uncertainty in End-Milling γ′-Strengthened Difficult-to-Machine Alloy

Author:

Akhavan Niaki Farbod1,Ulutan Durul2,Mears Laine1

Affiliation:

1. International Center for Automotive Research, Clemson University, Greenville, SC 29607

2. Mechanical Engineering, Bucknell University, Lewisburg, PA 17837

Abstract

Nickel-based alloys are those of materials that are maintaining their strength at high temperature. This feature makes these alloys a suitable candidate for power generation industry. However, high wear rate and tooling cost are known as the challenges in machining Ni-based alloys. The high wear rate causes a rapid failure of the tool, and therefore, fewer data will be available for model development. In addition, variations in material properties and hardness, residual stress, tool runout, and tolerances are some uncontrollable effects adding uncertainties to the currently developed models. To address these challenges, a probabilistic Bayesian approach using Markov Chain Monte Carlo (MCMC) method has been used in this work. The MCMC method is a powerful tool for parameter inference and quantification of embedded uncertainties of models. It is shown that by adding a prior probability to the observation probability, fewer experiments are required for inference. This is specifically useful in model development for difficult-to-machine alloys where high wear rate lowers the cardinality of the dataset. The combined Gibbs–Metropolis algorithm as a subset of MCMC method has been used in this work to quantify the uncertainty of the unknown parameters in a mechanistic tool wear model for end-milling of a difficult-to-machine Ni-based alloy. Maximum of 18% error and average error of 11% in the results show a good potential of this modeling in prediction of parameters in the presence of uncertainties when limited experiments are available.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3