Elastodynamic Analysis of a Completely Elastic System

Author:

Kohli D.1,Hunter D.2,Sandor G. N.3

Affiliation:

1. University of Wisconsin-Milwaukee

2. Sikorsky Aircraft Co., Stratford, Connecticut

3. University of Florida

Abstract

The completely elastic system considered for this vibration analysis consists of an offset slider-crank mechanism having (a) elastic supports and mountings of the mechanism permitting translational vibrations of the shafts and supports, (b) elastic shafts permitting torsional vibrations, (c) elastic links of the mechanism which deform due to external or internal body forces and allow flexural and axial vibrations. Both the effect of the deformations caused by the inertia forces in the mechanism links, shafts, and supports and the effect of change in the inertia forces due to these deformations are taken into account in constructing a general mathematical model for conducting elastodynamic analysis. The rigid displacements (finite and infinitesimal) of the mechanism links due to deformations in the support are evaluated using a truncated Taylor series approximation. Deformation in the links caused by the inertia forces is approximated by a finite number of terms in a Fourier series using the Raleigh-Ritz method. The Lagrange equations of motion are used to obtain coupled time varying linear ordinary differential equations of motion for the vibration analysis of the slider-crank mechanism. The method in general may be applied to any planar or spatial system consisting of elastic links, elastic shafts, and elastic supports. Numerical examples are presented for illustration.

Publisher

ASME International

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Selection of modal basis for flexible bodies of mechanical systems;Mechanism and Machine Theory;1995-04

2. Dynamic modeling of a slider-crank mechanism with coupler and joint flexibility;Mechanism and Machine Theory;1994-01

3. On the kineto-elastovibrations of high-speed mechanisms;International Journal of Mechanical Sciences;1993-09

4. Vibratory response of a sandwich link in a high speed mechanism;Mechanism and Machine Theory;1993-05

5. Dynamics of general flexible multibody systems;International Journal for Numerical Methods in Engineering;1990-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3