Zero Phase Error Tracking Controllers With Optimal Gain Characteristics

Author:

Funahashi Y.1,Yamada M.1

Affiliation:

1. Department of Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466, Japan

Abstract

Recently, a digital feedforward controller, called a Zero Phase Error Tracking Controller (ZPETC), has been proposed. In this controller, the overall frequency response between the desired output and the controlled output exhibits zero phase shift for all frequencies by using a few steps of the future desired output data. In this paper, two extensions of ZPETC’s are proposed: a ZPETC with deadbeat tracking performance and an L2-Optimal ZPETC. These ZPETC’s can provide the overall control system with not only the above phase property but also the excellent tracking performance for a desired output and the superior gain property, respectively. Moreover, a ZPETC with both the excellent tracking performance for a step-type and ramp-type desired output and the superior gain property, called an L2-Optimal ZPETC with deadbeat tracking performance, is presented.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic error of CNC machine tools: a state-of-the-art review;The International Journal of Advanced Manufacturing Technology;2019-12-13

2. A zero phase error tracking based path precompensation method for high-speed machining;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2015-04-13

3. Continuous Rotary Motor Electro-Hydraulic Servo System Based on the Zero Phase Error Tracking Controller;Applied Mechanics and Materials;2011-10

4. Enhanced feedforward control of non-minimum phase systems for tracking predefined trajectory;International Journal of Control;2010-11-20

5. A fuzzy cross-coupled linear quadratic regulator for improving the contour accuracy of bi-axis machine tools;Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference;2009-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3