The Impact of Posture on the Mechanical Properties of a Functional Spinal Unit During Cyclic Compressive Loading

Author:

Barrett Jeff M.1,Gooyers Chad E.2,Karakolis Thomas3,Callaghan Jack P.4

Affiliation:

1. Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 6P2, Canada e-mail:

2. Giffin Koerth Forensic Engineering and Science, 40 University Avenue, Toronto, ON M5J 1T1, Canada e-mail:

3. Defence Research and Development Canada, 1133 Sheppard Avenue West, Toronto, ON M3K 2C9, Canada e-mail:

4. Mem. ASME, Department of Kinesiology, University of Waterloo, Burt Matthews Hall, Room 3122, 200 University Avenue West, Waterloo, ON N2L 6P2, Canada e-mail:

Abstract

To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3