Investigation of In-Cylinder Mixing Using Large Eddy Simulation Models for LTC Diesel Applications

Author:

Banerjee Siddhartha1,Bharadwaj Nidheesh1,Rutland Christopher J.1

Affiliation:

1. University of Wisconsin - Madison, Madison, WI

Abstract

In-cylinder mixture preparation and early combustion heat release are studied using Large Eddy Simulation (LES) for direct injection (DI) diesel with high exhaust gas recirculation (EGR) and early injection timing. Both LES and traditional Reynolds Average Navier-Stokes (RANS) calculations are carried out using KIVA-3V release 2 and compared with experimental results of medium load LTC-diesel (Low Temperature Combustion) cases. Simulations presented in this paper are carried out using KH-RT (Kelvin Helmholtz – Rayleigh Taylor) breakup model for spray atomization and CHEMKIN n-heptane mechanism for combustion and both dynamic structure LES and RNG (re-normalized group) kε RANS for turbulence model. Although engine simulation using LES model poses significant challenges on practical engine grids, significant agreement with LTC-diesel experiments is observed by using an additional spray source term for modeling the effect of liquid sprays on sub-grid kinetic energy transport calculation in engines. Results when compared to RANS, demonstrate that LES is able to predict local spots of early heat release resulting in more accurate prediction of start of combustion timing and early heat release phasing. Mixing due to bulk fluid motion such as swirl is also observed more distinctively in LES calculations.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3