Application of the First Order Generalized-α Method to the Solution of an Intrinsic Geometrically Exact Model of Rotor Blade Systems

Author:

Khouli F.1,Afagh F. F.1,Langlois R. G.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

Abstract

An energy decaying integration scheme for an intrinsic, geometrically exact, multibody dynamics model with composite, dimensionally reducible, active beamlike structures is proposed. The scheme is based on the first order generalized-α method that was proposed and successfully applied to various nonlinear dynamics models. The similarities and the differences between the mathematical structure of the nonlinear intrinsic model and a parallel nonlinear mixed model of chains are highlighted to demonstrate the effect of the form of the governing equation on the stability of the integration scheme. Simple C° shape functions are used in the spatial discretization of the state variables owing to the weak form of the model. Numerical solution of the transient behavior of multibody systems, representative of various rotor blade system configurations, is presented to highlight the advantages and the drawbacks of the integration scheme. Simulation predictions are compared against experimental results whenever the latter is available to verify the implementation. The suitability and the robustness of the proposed integration scheme are then established based on satisfying two conservational laws derived from the intrinsic model, which demonstrate the retained energy decaying characteristic of the scheme and its unconditional stability when applied to the intrinsic nonlinear problem, and the dependance of its success on the form of the governing equations.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3