Scaling of Static Fracture of Quasi-Brittle Structures: Strength, Lifetime, and Fracture Kinetics

Author:

Le Jia-Liang1,Bažant Zdeněk P.2

Affiliation:

1. Assistant ProfessorDepartment of Civil Engineering,University of Minnesota, Minneapolis, MN 55455

2. McCormick Institute Professor and W.P. Murphy Professorof Civil Engineering and Materials Science,Northwestern University,2145 Sheridan Rd., CEE, Evanston, IL 60208 e-mail:

Abstract

The paper reviews a recently developed finite chain model for the weakest-link statistics of strength, lifetime, and size effect of quasi-brittle structures, which are the structures in which the fracture process zone size is not negligible compared to the cross section size. The theory is based on the recognition that the failure probability is simple and clear only on the nanoscale since the probability and frequency of interatomic bond failures must be equal. The paper outlines how a small set of relatively plausible hypotheses about the failure probability tail at nanoscale and its transition from nano- to macroscale makes it possible to derive the distribution of structural strength, the static crack growth rate, and the lifetime distribution, including the size and geometry effects [while an extension to fatigue crack growth rate and lifetime, published elsewhere (Le and Bažant, 2011, “Unified Nano-Mechanics Based Probabilistic Theory of Quasibrittle and Brittle Structures: II. Fatigue Crack Growth, Lifetime and Scaling,” J. Mech. Phys. Solids, 1322–1337), is left aside]. A salient practical aspect of the theory is that for quasi-brittle structures the chain model underlying the weakest-link statistics must be considered to have a finite number of links, which implies a major deviation from the Weibull distribution. Several new extensions of the theory are presented: (1) A derivation of the dependence of static crack growth rate on the structure size and geometry, (2) an approximate closed-form solution of the structural strength distribution, and (3) an effective method to determine the cumulative distribution functions (cdf’s) of structural strength and lifetime based on the mean size effect curve. Finally, as an example, a probabilistic reassessment of the 1959 Malpasset Dam failure is demonstrated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3