The Quantification and Improvement of the Thermal Stability of Aviation Turbine Fuel

Author:

Mills J. S.1,Kendall D. R.1

Affiliation:

1. Shell Research Limited, Thornton Research Centre, P.O. Box 1, Chester, England

Abstract

Studies of the propensity of aviation turbine fuels to lacquer engine oil-coolers that were described in an earlier paper have been extended to cover a wider range of fuels. Fuel performance was found to vary widely; some fuels were liable to lacquer oil-coolers to the extent of producing significant losses in efficiency at the most severe operating conditions currently encountered. Oxidation studies conducted in parallel with the rig investigations indicate that a fuel’s performance is strongly dependent on its tendency to initiate radical oxidation reactions. The relatively high initiation rate of less stable fuels is believed to be due in part to their trace content of metals that catalyze oxidation reactions. Accordingly, an approved metal deactivating additive has been examined as a means of improving the performance of such fuels.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3