Alternative Representation of the Shoulder Orientation Based on the Tilt-and-Torsion Angles

Author:

Campeau-Lecours Alexandre1,Vu Dinh-Son2,Schweitzer Frédéric1,Roy Jean-Sébastien3

Affiliation:

1. Department of Mechanical Engineering, Center for Interdisciplinary Research in Rehabilitation and Social Integration, Université Laval, Quebec, QC G1V 0A6, Canada

2. College of Engineering and Technology, American University of Middle East, Eqaila 5482+W2, Kuwait

3. Department of Rehabilitation, Center for Interdisciplinary Research in Rehabilitation and Social Integration, Université Laval, Quebec, QC G1V 0A6, Canada

Abstract

Abstract The International Society of Biomechanics (ISB) has proposed standardized recommendations for recording human joint motion. The Euler angles—the orientation representation currently proposed by the ISB—have two drawbacks, namely, the issue of singularities (gimbal lock) and the difficulty to obtain clinical and interpretable orientation representation for compound movements. The orientation representation of the shoulder joint with the Euler angles is particularly challenging due to its broad range of motion. This paper proposes and evaluates an alternative orientation representation for shoulder movement based on the tilt-and-torsion representation, a method that aims at providing a more clinically interpretable solution for describing joint movements compared to the standard Euler angles. Three studies were performed to compare the different orientation representation methods. The first two studies consist in simulations of arm elevation in different planes. The third study is an experiment using inertial-measurement-units with one test subject performing shoulder elevation movements in different planes. The tilt-and-torsion representation is then compared with different Euler angle conventions. The results show that Euler angles are biased or clinically uninterpretable for compound movements. Conversely, tilt-and-torsion representation does not suffer from these limitations. Although not extensive, the experiments suggest that the tilt-and-torsion representation has the potential to better represent human movements and provide more clinically interpretable results than the Euler angles.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3