Bore Cylindricity in Finish Cylinder Boring

Author:

Chen Lei1,Yang Juhchin A.2,Shih Albert J.3

Affiliation:

1. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

2. Virtual Manufacturing Section, Ford Motor Company, Livonia, MI 48150 e-mail:

3. Department of Mechanical Engineering and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 e-mail:

Abstract

Finish boring is a machining process to achieve the cylinder bore dimensional and geometrical accuracy. The bore cylindricity error sources, including the workpiece thermal expansion and deformation due to cutting and clamping forces, and spindle radial error motion, in finish boring were identified using combined experimental and finite element method (FEM) analysis. Experiments were conducted to measure the workpiece temperature, cutting and clamping forces, spindle error, and bore shape. FEM analysis of the workpiece temperature, thermal expansion, and deformation due to cutting and clamping forces was performed. The coordinate measurement machine (CMM) measurements of the bore after finish boring showed the 5.6 μm cylindricity and a broad spectrum from the second to tenth harmonics. The FEM revealed the effects of workpiece thermal expansion (1.7 μm cylindricity), deformation due to cutting force (0.8 μm cylindricity), and clamping force (1.9 μm cylindricity) on the finished bore and the dominance by the first to third harmonics using the three-jaw fixture. The spindle synchronous radial error motion (3.2 μm cylindricity) was dominated by the fourth and higher order harmonics and matched well with the high (above the fourth) harmonics in CMM measurements (2.9 μm cylindricity). The spindle error was the dominant error source for bore cylindricity in this finish boring study, contributing to about half of the total cylindricity error.

Funder

Ford Motor Company

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3