Flexible Rotor Balancing by the Exact Point-Speed Influence Coefficient Method

Author:

Tessarzik J. M.1,Badgley R. H.1,Anderson W. J.2

Affiliation:

1. Mechanical Technology Incorporated, Latham, N. Y.

2. Fluid Systems Components Division, NASA-Lewis Research Center, Cleveland, Ohio

Abstract

A test program was conducted to confirm experimentally the validity of the exact point-speed influence coefficient method for balancing rotating machinery, and to assess the practical aspects of applying the method to flexible rotors. Testing was performed with a machine having a 41-in. long, 126-lb rotor. The rotor was operated over a speed range encompassing three rotor-bearing system critical speeds: two “rigid-body” criticals and one flexural critical. Rotor damping at the flexural critical was very low due to the journal bearings being located at the nodal points of the shaft. The balancing method was evaluated for three different conditions of initial rotor unbalance. The method was found to be effective and practical. Safe passage through all the critical speeds was obtained after a reasonable number of balancing runs. Success of the balancing method was, in large part, due to the accuracy of the instrumentation system used to obtain phase-angle measurements during the balancing procedure.

Publisher

ASME International

Subject

General Medicine

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3