Affiliation:
1. Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210
2. Department of Mechanical and Aerospace Engineering, University of Delaware, Newark, Del. 19711
Abstract
Experimental data and correlations are presented for the time scales of developing and decaying thermal convection with volumetric heating in a horizontal layer. The layer is bounded by rigid surfaces, with an insulated lower boundary and an isothermal upper boundary. The time for complete flow development/decay, as a result of a step change in volumetric heat generation, is simply parameterized in terms of the Fourier number for the layer, the step change in Rayleigh number, ΔRa, and the initial/final dimensionless maximum core temperature. For developing flows, ΔRa > 0, results are in good agreement with existing experiments and an approximate boundary layer theory. In decaying flows, Fourier numbers are larger than those of previously reported experiments for a motionless final state. Data for turbulent-to-turbulent transitions when ΔRa < 0 suggests that the approximate boundary layer theory underestimates the Fourier number. Experimental uncertainties on measured Fourier numbers are generally well within the limits of uncertainty allowed by the approximate theory.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献