Experiments on Transient Thermal Convection With Internal Heating—Large Time Results

Author:

Keyhani M.1,Kulacki F. A.2

Affiliation:

1. Department of Mechanical Engineering, The Ohio State University, Columbus, Ohio 43210

2. Department of Mechanical and Aerospace Engineering, University of Delaware, Newark, Del. 19711

Abstract

Experimental data and correlations are presented for the time scales of developing and decaying thermal convection with volumetric heating in a horizontal layer. The layer is bounded by rigid surfaces, with an insulated lower boundary and an isothermal upper boundary. The time for complete flow development/decay, as a result of a step change in volumetric heat generation, is simply parameterized in terms of the Fourier number for the layer, the step change in Rayleigh number, ΔRa, and the initial/final dimensionless maximum core temperature. For developing flows, ΔRa > 0, results are in good agreement with existing experiments and an approximate boundary layer theory. In decaying flows, Fourier numbers are larger than those of previously reported experiments for a motionless final state. Data for turbulent-to-turbulent transitions when ΔRa < 0 suggests that the approximate boundary layer theory underestimates the Fourier number. Experimental uncertainties on measured Fourier numbers are generally well within the limits of uncertainty allowed by the approximate theory.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of heat transfer and solidification in LIVE L3A experiment;International Journal of Heat and Mass Transfer;2013-03

2. Modeling of Transient Turbulent Natural Convection in a Melt Layer With Solidification;Journal of Heat Transfer;1997-08-01

3. The Effects of Turbulent Natural Convection on Thermal Explosion Critical Conditions;Journal of Heat Transfer;1986-08-01

4. Heat transfer—a review of 1983 literature;International Journal of Heat and Mass Transfer;1984-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3