Crack Growth Behavior of Pipes Made From Polyvinyl Chloride Pipe Material1

Author:

EL-Bagory Tarek M. A. A.1,Younan Maher Y. A.2

Affiliation:

1. Mechanical Design Department, Faculty of Engineering Mataria, Helwan University, Cairo El-Mataria,11724, Egypt e-mail:

2. Associate Dean for Undergraduate Studies School of Sciences and Engineering, The American University in Cairo AUC, Cairo 11835, Egypt e-mail:

Abstract

The behavior of crack growth of polymeric materials is affected by several operating conditions such as crosshead speed, specimen thickness, load line, and specimen configurations, which reverse the behavior of crack from stable to unstable crack growth behavior. The main objective of the present paper is the determination of plane strain fracture toughness (KIC) for polyvinyl chloride (PVC) used in piping water transmission systems. The dimensions of the PVC pipe are outside diameter, Do = 315 mm, standard dimensions ratio, SDR = 13.23, ratio between outside to inside radii Ro/Ri = 1.179, and pipe thickness, t = 24 mm. Curved specimens are prepared from a pipe by cutting 12 mm thickness ring segments. The curved specimens are divided into two specimen configurations, namely, curved three-point bend (CTPB) and C-shaped tension (CST) specimens. All specimens are provided artificially with a precrack. CTPB specimen is further cut into five 72 deg sectors with each being centrally notched to a depth approximately a = 0.479 of the wall thickness. CST specimen configuration is characterized by the eccentricity X = 0, and 0.5 W, of the loading holes from the bore surface. The linear elastic fracture mechanics theory (LEFM) is used to predict the plane strain fracture. The tests are carried out at room temperature, Ta equal 20 °C, and different crosshead speeds of (10–500 mm/min). The numerical analysis carried out within the frame of the present work is done using the finite element program Cosmos 2.6. Finite element method (FEM) is used to compute the stress intensity factor KQ surrounding the crack tip. The computed stress intensity factor can then be compared with that obtained by theoretical equation. The experimental fracture test results reveal that the crosshead speed has been proven to affect the mode of failure and mode of fracture. At lower crosshead speeds, the mode of failure is ductile, while at higher crosshead speeds, it is brittle. The specimen configuration also affects the fracture toughness. CST specimens show higher fracture toughness in the case of pin loading location X = 0.5W than X = 0 by about (12%). The transitional crosshead speed is affected by specimen geometry. CST specimens (CST) at X = 0 and 0.5W have higher transitional crosshead speed compared with the CTPB specimen configuration.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3