Affiliation:
1. Mechanical Design Department, Faculty of Engineering Mataria, Helwan University, Cairo El-Mataria,11724, Egypt e-mail:
2. Associate Dean for Undergraduate Studies School of Sciences and Engineering, The American University in Cairo AUC, Cairo 11835, Egypt e-mail:
Abstract
The behavior of crack growth of polymeric materials is affected by several operating conditions such as crosshead speed, specimen thickness, load line, and specimen configurations, which reverse the behavior of crack from stable to unstable crack growth behavior. The main objective of the present paper is the determination of plane strain fracture toughness (KIC) for polyvinyl chloride (PVC) used in piping water transmission systems. The dimensions of the PVC pipe are outside diameter, Do = 315 mm, standard dimensions ratio, SDR = 13.23, ratio between outside to inside radii Ro/Ri = 1.179, and pipe thickness, t = 24 mm. Curved specimens are prepared from a pipe by cutting 12 mm thickness ring segments. The curved specimens are divided into two specimen configurations, namely, curved three-point bend (CTPB) and C-shaped tension (CST) specimens. All specimens are provided artificially with a precrack. CTPB specimen is further cut into five 72 deg sectors with each being centrally notched to a depth approximately a = 0.479 of the wall thickness. CST specimen configuration is characterized by the eccentricity X = 0, and 0.5 W, of the loading holes from the bore surface. The linear elastic fracture mechanics theory (LEFM) is used to predict the plane strain fracture. The tests are carried out at room temperature, Ta equal 20 °C, and different crosshead speeds of (10–500 mm/min). The numerical analysis carried out within the frame of the present work is done using the finite element program Cosmos 2.6. Finite element method (FEM) is used to compute the stress intensity factor KQ surrounding the crack tip. The computed stress intensity factor can then be compared with that obtained by theoretical equation. The experimental fracture test results reveal that the crosshead speed has been proven to affect the mode of failure and mode of fracture. At lower crosshead speeds, the mode of failure is ductile, while at higher crosshead speeds, it is brittle. The specimen configuration also affects the fracture toughness. CST specimens show higher fracture toughness in the case of pin loading location X = 0.5W than X = 0 by about (12%). The transitional crosshead speed is affected by specimen geometry. CST specimens (CST) at X = 0 and 0.5W have higher transitional crosshead speed compared with the CTPB specimen configuration.
Subject
Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献