High Temperature Thermal Conductivity of Rare Gases and Gas Mixtures

Author:

Matula Richard A.1

Affiliation:

1. Fluid Dynamics Laboratory, Department of Mechanical Engineering, University of Michigan, Ann Arbor, Mich.

Abstract

The thermal conductivities of pure argon, pure xenon, and of three helium-argon mixtures have been determined in the temperature range 650–5000 deg K by measuring heat transfer rates from shock heated gases to the end wall of a shock tube. The heat transfer rate was measured by monitoring the time dependence of the voltage drop across a thin-film gage mounted in the end cap of the shock tube. During the course of the experiments, the pressure of the test gas behind the reflected shock wave ranged from approximately 1/3 to 2 atmospheres. In all cases, the temperature dependence (T) of the thermal conductivity (K) was assumed to follow a power law relationship of the form K/Kw = (T/Tw)b where Kw is the established value of the gas conductivity at the reference temperature (Tw) which was chosen near room temperature. The parameter b was evaluated by applying a least squares fit to the experimental data. Theoretical values of the conductivity of all of the gases studied were computed utilizing the Lennard-Jones (6–12) potential. In the case of the gas mixtures, an empirical combining rule was used to relate the force constants between unlike atoms to the known constants between like atoms. The experimental and theoretical results for the pure gases are in good agreement. The experimental and theoretical values of the mixture conductivities are within 10–20 percent, and as expected the theoretical predictions are least accurate for equimolar mixtures.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reference Correlation for the Thermal Conductivity of Xenon from the Triple Point to 606 K and Pressures up to 400 MPa;International Journal of Thermophysics;2021-02-11

2. Measurement of transport properties of high-temperature fluids;International Journal of Thermophysics;1991-01

3. Measurements of the thermal conductivity of Ar-N2 and N2-O2 mixtures at high temperatures by the shock tube method.;JSME international journal;1987

4. Thermal conductivity of inert gases over a wide temperature range;Journal of Engineering Physics;1982-11

5. Bibliography;Thermophysical Properties Research Literature Retrieval Guide 1900–1980;1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3