The Low Reduced Frequency Limit of Vibrating Airfoils—Part II: Numerical Experiments

Author:

Vega Almudena1,Corral Roque2

Affiliation:

1. School of Aeronautics and Space, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros, 3, Madrid 28040, Spain e-mail:

2. Department of Fluid Dynamics and Aerospace Propulsion, School of Aeronautics and Space, Universidad Politecnica de Madrid, Madrid 28040, Spain; Advanced Engineering Direction, Industria de TurboPropulsores S.A., Francisca Delgado, 9, Alcobendas, Madrid 28108, Spain e-mail:

Abstract

This paper studies the unsteady aerodynamics of vibrating airfoils in the low reduced frequency regime with special emphasis on its impact on the scaling of the work-per-cycle curves by means of numerical experiments. Simulations using a frequency domain linearized Navier–Stokes solver have been carried out on rows of a low-pressure turbine (LPT) airfoil section, the NACA0012 and NACA65 profiles, and a flat-plate cascade operating at different flow conditions. Both the traveling wave (TW) and the influence coefficient (IC) formulations of the problem are used in combination to investigate the nature of the unsteady pressure perturbations. All the theoretical conclusions derived in Part I of the paper have been confirmed, and it is shown that the behavior of the unsteady pressure modulus and phase, as well as the work-per-cycle curves, are fairly independent of the geometry of the airfoil, the operating conditions, and the mode-shape in first-order approximation in the reduced frequency. The second major conclusion is that the airfoil loading and the symmetry of the cascade play an essential role in this trend. Simulations performed at reduced frequency ranges beyond the low reduced frequency limit reveal that, in this regimen, the ICs modulus varies linearly with the reduced frequency, while the phase is always π/2, and then, the classical sinusoidal antisymmetric shape of work-per-cycle curves in the low reduced frequency limit turns into a cosinusoidal symmetric shape. It is then concluded that the classical cosinusoidal shape of compressor airfoils is not neither a geometric nor a flow effect, but a direct consequence of the fact that the natural frequencies of the lowest modes of compressors are higher than that of high aspect ratio cantilever LPT rotor blades. Numerical simulations have also confirmed that the actual mode-shape of the airfoil motion does not alter the conclusions derived in Part I of the paper.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3