Equilibrium Behavior of a Tethered Autogyro: Application in Extended Flight and Power Generation

Author:

McConnell Jonathan1,Das Tuhin1

Affiliation:

1. University of Central Florida Mechanical and Aerospace Engineering, , Orlando, FL 32816

Abstract

Abstract In this article, we study the characteristics of steady autorotation of a tethered autogyro. The phenomenon of autorotation refers to the natural spinning of a rotor in a wind field. We explore the viability of tethered autogyros as unmanned aerial vehicles (UAVs) for long-duration and energy efficient hovering applications, such as in monitoring or surveillance. The tether provides mooring and can be used to power the rotor and to transmit wind power to the ground when suitable. This is a novel application of autorotation. It requires a generalized formulation and modeling of autorotation, beyond what is reported in the literature. We adopt a model-based approach where the blade element momentum (BEM) method and catenary mechanics are used to model the aerodynamics and the tether, respectively. The resulting model is highly nonlinear and numerical methods are proposed to solve for the equilibria. The model is validated against existing simulation and experimental results in the literature. It is extended to incorporate new features that are pertinent to our application, such as low rotor speeds, regenerative torque for power generation, combining catenary mechanics with aerodynamics, and varying atmospheric conditions with altitude. We characterize the autorotational equilibria over a range of operating conditions involving multiple independent variables. The analysis reveals an optimal operating range of the tip speed ratio of the autogyro under equilibrium. It also indicates the possibility of power generation in large autogyros stationed at high altitudes.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference45 articles.

1. Electricity Generation From Jet Stream Winds;Fletcher;J. Energy,1979

2. Overview of the Integrated Global Radiosonde Archive;Durre;J. Clim.,2006

3. Harnessing High-Altitude Wind Power;Roberts;IEEE Trans. Energy Convers.,2007

4. Global Assessment of High-Altitude Wind Power;Archer;Energies,2009

5. New Wind Energy Resource Potential Estimates for the United States;Elliott,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3